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A statistical theory is developed for the structure and propagation velocity of pre- 
mixed flames in turbulent flows with scales large compared with the laminar flame 
thickness. The analysis, free of usual closure assumptions, involves a regular perturba- 
tion for small values of the ratio of laminar flame thickness to turbulence scale, termed 
the scale ratio E ,  and a singular perturbation for large values of the non-dimensional 
activation temperature p. Any effects of the flame on the flow are considered to be 
given. In  this initial study, molecular coefficients for diffusion of heat and reactants 
are set equal. The results identify convective-diffusive and reactive-diffusive zones 
in the flame and predict thickening of the flame by turbulence through streamwise 
displacement of the reactive-diffusive zone. Profiles for intensities of temperature 
fluctuations and for streamwise turbulent transport are obtained. A fundamental 
quantity occurring in the analysis is the longitudinal displacement of the reactive- 
diffusive zone in an Eulerian frame by turbulent fluctuations, and to first order in the 
scale ratio this equals the longitudinal displacement of fluid elements in an Eulerian 
frame by turbulent fluctuations, herein termed simply the Eulerian displacement. To 
first order in the scale ratio it is found that, if the Eulerian displacement experiences 
the same type of statistical non-stationarity as the corresponding Lagrangian displace- 
ment, then the diffusion approximation is valid for streamwise turbulent transport but 
the turbulent flame thickens as time increases, while if the Eulerian displacement is 
statistically stationary then the diffusion approximation necessitates a negative 
coefficient of diffusion in part of the flame but the flame thickness remains constant. 
By carrying the analysis to second order in the scale ratio it is shown that the turbulent- 
flame speed exceeds the laminar-flame speed by an amount proportional to the mean 
square of the transverse gradient of the Eulerian displacement. This result can be 
understood from the mechanistic viewpoint of a wrinkled laminar flame in terms of the 
increase in flame area produced by turbulence. Thus the theory provides a precise 
statistical quantification of the model of the wrinkled laminar flame for describing 
structures of turbulent flames. 

1. Introduction 
Difficulties in developing theoretical descriptions of turbulent flames are so great 

that in most work ad hoc approximations, termed ‘modelling assumptions’, are intro- 
duced to render calculations tractable. The predictions that result always are question- 
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able because they rely on untested assumptions. An alternative to this mainstream in 
research on turbulent combustion is to study limiting cases in which perturbation 
methods may be employed to provide theories independent of modelling assumptions. 
A step in this direction has been reported previously in work in which the turbulence 
intensity was treated as a small parameter and the overall activation energy as large 
(Williams 1975). In  the present paper a somewhat analogous perturbation theory is 
developed, not beginning with the small-intensity approximation but instead making 
use of the assumption that the length scales of all fluctuations in the spectrum of 
turbulence are large compared with the thickness of a laminar flame. The analysis is 
completed, without introduction of arbitrary modelling approximations concerning 
closure, to yield predictions for the flame structure and flame speed. 

The configuration considered is the same as that of Williams (1970). A steady one- 
dimensional flow of a premixed combustible passes at low Mach number through a 
turbulence-producing grid oriented perpendicular to the flow direction. A planar 
turbulent flame, extending normal to the flow, is established downstream from the 
grid a t  a sufficiently large distance to prevent flame holding by individual elements of 
the grid. The mean flow velocity is adjusted to keep the flame position stationary. 
Experimentally, a gradual divergence of the duct may aid in maintaining a fixed flame. 
The mean velocity of the flow just ahead of the flame is the turbulent-flame speed. 
The theoretical results may be expected to apply more generally to open, planar, 
non-accelerating, turbulent flames in flows with negligible values of the mean rate of 
strain, 

The approximation of large-scale turbulence is applicable in particular under condi- 
tions for which the turbulent flame consists of a wrinkled laminar flame. From the 
results of the present development it will be found that the dominant physical pheno- 
menon analysed is flame wrinkling. There is a common misconception that if a turbu- 
lent flame consists of a wrinkled laminar flame then its structure is entirely understood. 
This idea is false because the geometry of the wrinkling in turbulent flows has not been 
studied thoroughly. For example, theories that predict turbulent-flame speeds from 
the wrinkled-flame model introduce arbitrary assumptions concerning the flame shape 
(Williams 1965). The principal contribution of the present work may be viewed as a 
precise formulation of kinematic aspects of flame wrinkling and of the consequent 
influences on the structure and speed of turbulent flames. 

To aid analysis of the flame wrinkling the fbrmalism is developed by use of a 00- 

ordinate system that moves in the longitudinal direction with the fluctuating velocity 
of a flamelet. Since the laminar flame is thin, in an Eulerian frame large fluctuations in 
temperature may occur even if flame displacements are small compared with turbu- 
lence scales. However, these large fluctuations do not occur in the moving frame 
adopted. This simplifies the analysis and extends its validity to turbulence of higher 
intensity than would otherwise be acceptable. In  fact, the approximation of low turbu- 
lence intensity, which restricted the previous analysis (Williams 1975) to grid turbu- 
lence in the final stage of decay, is not used in the present theory. 

In statistical theories of wrinkled flames concern arises about instabilities of the 
planar laminar flame. Hydrodynamic instabilities (Landau 1944) and thermal- 
diffusive instabilities (Sivashinsky 1977 a)  leading to cellular-flame phenomena 
of various types (Markstein 1964) are known to exist, and the character of these 
instabilities has begun to be clarified (e.g. Sivashinsky 1977a, b ;  Joulin & Clavin 1978). 
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The present work constitutes a first step in which attention is focused on the effects of 
upstream velocity fluctuations when the laminar flame is stable. Therefore restrictions 
are introduced to assure that the forcing perturbations, imposed externally, cannot 
trigger self-evolution of a non-planar or unsteady structure inherent in the flame. 
Specifically, the Lewis number (the ratio of thermal to molecular diffusivity) is set 
equal to unity, and the density change associated with the heat release of combustion 
is neglected. 

The value selected for the Lewis number excludes the thermal-diffusive instabilities, 
which are known to occur only if the Lewis number is less than a critical value which is 
slightly below unity or greater than a critical value appreciably above unity (Siva- 
shinsky 1977a, b ;  Joulin & Clavin 1978). This restriction limits the present analysis to 
smoothly wrinkled flames and leaves turbulent flames of cellular types for future 
studies. It is of interest to extend the theory to combustibles with Lewis numbers 
different from unity and to mixtures containing reactants with differing coefficients of 
diffusion. This necessitates working with different conservation equations for energy 
and species, instead of the single equation treated herein. It should be observed that, 
although the present formulation is developed for only a one-reactant system, it is 
applicable to a two-reactant system in which either both reactants have equal mole- 
cular diffusivities or the deficient reactant is sufficiently dilute; in the latter case, 
applicable either if there is an excess of inert components and the mixture is far from 
stoichiometry or if there is a negligible concentration of inert components, the relevant 
molecular diffusivity is that of the limiting component. The restriction to one-reactant 
systems with a Lewis number of unity is introduced here for the purpose of exhibiting 
the main features of the gradient-expansion method in the simplest manner possible. 
In  a sequel to this paper we extend the present analysis to consider a Lewis number 
differing from unity by an amount of the order of the reciprocal of the non-dimensional 
activation temperature. This extension shows that, when the Lewis number is above 
the lower critical value for instability, the results differ from those derived here only 
through the effect of the fluctuation on the maximum value of the temperature, which 
then differs from the adiabatic flame temperature. Additional influences on flame speed 
and flame structure occur, but the phenomena derived herein remain. In the unstable 
situation the analysis would be appreciably more difficult but also would provide new 
and interesting features concerning turbulent cellular flames. 

The neglect of density changes associated with heat release circumvents completely 
the Landau instability. Although the introduction of this crude approximation raises 
questions concerning the degree of generality of the results, it  is possible that the 
theory will continue to hold when the density changes are sufficiently small for the 
Landau instability to be negligible over the time scale of the upstream fluctuating 
field or over the time scale of observation. To test this hypothesis it would be of interest 
to extend the theory to consider density changes across the flame. Difficulties in 
observing Landau instability suggest that the present results may be valid for 
appreciably large density ratios. In  particular, this instability haa seldom been 
encountered for laminar flames. The experimental observation of the existence of 
wrinkled laminar flames in turbulent flows under suitable conditions (Libby & 
Williams 1976) lends support to the contention that the present theory applies in some 
respects to many real flames. 

Fluctuations in temperature and in reactant concentration in the approach flow are 
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neglected in the following analysis. This corresponds to the usual experimental 
situation, in which a uniform isothermal mixture of reactants is passed through a non- 
heated grid. Fluctuations in temperature, for example, can be introduced by heating 
the grid. In general, such upstream fluctuations in temperature or concentration 
necessitate retaining at least two conservation equations in the analysis. We have not 
investigated this problem, although fundamental difficulties may not arise because 
instability phenomena are not anticiplated. We have included upstream temperature 
fluctuations in the one-equation model. This is consistent with the full equations if 
temperature fluctuations are perfectly correlated with concentration fluctuations and 
if the relative amplitudes of temperature and concentration fluctuations are such that 
the sum of the thermal and chemical enthalpies remains constant. The analysis will 
not be included here because of the excessively complicated algebra. The results 
influence some details of the structure of the turbulent flame, but whether they pro- 
duce a flame-speed correction dependent on the turbulence scales can be ascertained 
only by carrying the analysis beyond second order in the ratio of length scales. 

The problem will be formulated in the following section, where the transformation 
to the moving co-ordinate system is made. Analyses to first and second orders in the 
ratio of length scales appear in the subsequent section. The second-order theory is 
needed in order to obtain a non-vanishing constant correction to the flame speed. Both 
of these analyses involve matched asymptotic expansions for large values of the non- 
dimensional activation temperature, there being separate convective-diffusive and 
reactive-diffusive zones in this limit, just as for the ordinary laminar flame (Williams 
1971). The results for flame speed and for flame structure are presented in subsequent 
sections. 

2. Formulation 
For simplicity, consider an exothermic reaction of the type A --f B, and assume that 

A and B have constant and equal specific heats cp .  If the pressure is constant and if the 
Lewis number is unity, then an exact solution to the equation for the sum of the 
thermal and chemical enthalpies is c,T+Q,Y, = cpTf, where T is the temperature, 
YA denotes the mass fraction of species A ,  fJJ1 represents the heat released per unit 
mass of species A consumed, and T, is the adiabatic flame temperature. Use of this 
result enables the equation for conservation of thermal enthalpy to be written as 

K+?.$T-e.(k$T) at̂  = B(T,-T)nexp(-T,/T), 

where + represents the velocity vector and h the coefficient of thermal conductivity. 
The density p of the gas mixture has been assumed to be constant. In  the term for 
chemical production of heat, T, denotes the constant activation temperature for the 
Arrhenius reaction (the ratio of the activation energy to the universal gas constant), 
n is the order of the reaction with respect to the' reactant A ,  and the constant prefactor 
B is the product of (cp/QA)n-l/p with the frequency factor for the reaction rate. Hats 
on time and gradients indicate dimensional time and space co-ordinates. 

Non-dimensional co-ordinates are introduced according to 

(x,y,z) = (6?,Q,2)uLpcp/h and t = t^u~pc,/h, 
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where uL is the laminar-flame velocity while d = h/(uLpcp) and tL = d/uL are the 
laminar-flame thickness and transit time, respectively. The mean flow is in the 4 
direction, Q and 5 being transverse co-ordinates. The non-dimensional vector of 
velocity fluctuations is denoted by v = (u, a, w) = (a - uT, 6, 8) /uL,  its ensemble 
average being T = 0. Here uT is the average velocity of the flow, the turbulent-flame 
speed. In  the statistical sense ZI is taken to be stationary in t and homogeneous in the 
y and z directions. 

In  terms of the dimensionless normalized temperature or concentration variable 
Y = (3- T)/ (T , -  To), where To is the upstream temperature, (1) becomes 

aY/Bt+maY/az+v .VY-V2Y = -ALF(Y) ,  (2) 

where m = uT/uL, P ( Y )  = P+lYnexp[-/3Y/(l--aY)], (3) 

a = (3- To)/T,, B = T,(T,- T,)/T,2 

AL = [AB exp ( - Ta/T,)]/[T~+lTjanpcpuE( 1 - To/T,)2]. (4) and 

Here a is a non-dimensional measure of the heat release, p is the appropriately non- 
dimensionalized activation temperature and A, is the conventional eigenvalue for the 
propagation velocity of the laminar flame. It is anticipated that (2) will possess 
acceptable solutions only for a particular value of m, which then may be thought of as 
a burning-rate eigenvalue specifying the turbulent flame speed uT. Note that, with 
density constant, overall mass conservation adds the requirement V .  v = 0 to (2). The 
only additional conditions needed are the boundary conditions that Y approaches 
unity as x approaches - 00 and Y approaches zero as x approaches + co. 

Analysis of (2) provides us not only with a value of uT but also with the time and 
space dependence of Y in terms of the fluctuating part of the velocity field. In this sense 
the fluctuating velocity field is considered to be a given quantity, known in advance. 
This velocity field may be altered from its upstream value by the combustion process 
in crossing the flame. If that occurs, then the fluctuating velocity field appearing in the 
solution of (2) must include this modification. Since our objective here is only to 
investigate the influence of the turbulence on the combustion, consideration is not 
given to the Navier-Stokes equations, which are needed to find the modification to the 
turbulence by combustion. In future analysis it may be possible to use the expression 
for Y in terms of v, obtained here, to find this modification of v by combustion. 

The quantity a, which obeys 0 < u < 1, typically is a parameter of order unity. If 
pressure and the average molecular weight remain constant, then according to the 
ideal-gas law the change in density across the flame is pf-po = -pou. Therefore the 
approximation of constant density corresponds to a < 1. For the laminar problem it is 
known that the eigenvalue AL is independent of azbitrarily imposed conditions at the 
upstream boundary only within the context of an asymptotic expansion for p 4 1 
(Williams 1971). Although = aTa/Tf, the conditions p 4 1 and a < 1 are mutually 
consistent for sufficiently large activation temperatures. Here we investigate (2) in 
terms of an asymptotic expansion for large values of p. The essential feature is that 
P( Y )  is a non-negative, single-peaked function that is zero when Y = 0, that becomes 
negligibly small a~ Y approaches unity and that depends parametrically on p in such 
a way that its peak becomes increasingly narrow and moves progressively closer to 
Y = 0, with its magnitude continually decreasing for values of Y appreciably greater 

20 FLU: 90 
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than zero, as $ approaches infinity. The specific functional form appearing in (3) is 
inessential. 

If the fluctuating velocity field v varies weakly over the flame thickness as antici- 
pated for flames in large-scale turbulence, then it may be assumed that the local 
structure of the flame remains close to laminar at each time and, for high values of /?, 
possesses a thin, inner, reactive zone. Let x = a(y, z, t )  be the equation of this reactive 
' surface ' in non-dimensional co-ordinates. This unknown, randomly moving surface 
must be considered to be an eigenvalue which is a function of space and time, to be 
determined as m, with successively improved accuracy at each step of the perturbation 
analysis presented below. The method provides directly an expression for the flame- 
front fluctuations in terms of the fluctuating velocity field, a result which is interesting 
because it may be compared with experiment relatively easily. It is assumed that the 
time average of a vanishes, the mean velocity of the flow being the turbulent flame 
speed. 

When analysing flames in large-scale turbulence it is convenient to work in a co- 
ordinate system that moves in the longitudinal direction with the unknown, local, 
fluctuating position of the laminar-flame front. In terms of the variables 6 = x - a, 
7 = y, g = z and T = t ,  (2) becomes 

where Y(t, q , g ,  7 )  = Y(x,  y, z, t ) ,  subscripts on a denoting partial derivatives of the 
function a(y, z, t ) .  Note that if there is no spatial variation of a then there exists a trivial 
solution to (5), viz. 

where the subscript L refers to the laminar solution. This solution corresponds to a 
longitudinal motion of the laminar profiles, random in time and uniform in transverse 
co-ordinates. 

Any change in this physical behaviour must be attributable to transverse spatial 
variations of a, which are related, as suggested by (6), to spatial variations of the 
longitudinal fluctuating velocity u. Therefore an expansion in gradients of u about the 
randomly moving laminar solution (6) can be considered. Since the flame thickness d 
has been taken as the scale for non-dimensionalizing the lengths, the small parameter 8 

of this expansion is the ratio of the laminar flame thickness to the spatial scale over 
which u vanes. As in the laminar case, an asymptotic expansion for large values of /? 
must also be introduced in order to treat the nonlinear production term F(Y) .  

Y = YL(x-a) ,  m = 1, at = u, (6) 

3. Analysis 
The solution to (5) possesses an outer zone (6 and Y of order unity) where the 

reaction is negligible and an inner region (/?6 and BY of order unity) where convection 
is negligible in the first approximation. The corresponding analysis for the laminar 
flame may be found in the work of Williams (1975), for example, who shows that the 
outer solution is YL(g) = (1 - d )  H (  - g), where H(6)  denotes the unit step-function. 
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With the notation a = pt and @ = BY, the inner solution may be expressed as a series, 
$L(a) = Ilr0(a) +/3-l@,(a) + ...; the functions a($,) and $l($o)  are written out by 
Williams (1975). The expansion for the laminar eigenvalue is AL = A,+B-lA, + . .., 
where A, = (2n!)-l and A, = 2A,[a(n + 1) (n + 2 ) / 2  - 73, with 

y = lom [ 1 - r(x)] dx, in which r ( x )  = [ j f f ( y )  d y / n ! ] * .  

Here the function f (x)  = xne-” is the first approximation in the inner variable to 
b--lli’( Y )  in (3). In  the approach adopted here, the asymptotic expansion of this type 
in 8-l is performed first and the gradient expansion, in E ,  afterwards. Moreover, 
indices related to the expansion in 8-1 will not be introduced, since only the dominant 
term in the expansion is needed; in the following Y, m, A, and a represent quantities 
of lowest order in the asymptotic expansion in 8-1. 

By formally introducing the stretched variable a into (5), it  may be seen that, in the 
reaction zone (the inner region), to lowest order in 8-l the equation 

(7) (1  + IVa12) PY/85’ = ALF(Y) 

applies, provided that the characteristic lengths and times for turbulence are larger 
than those of the laminar flame. Except for the term /Val2,  (7) is identical to the 
corresponding inner equation of the laminar flame. The same method of solution may 
therefore be employed. The downstream boundary condition, obtained by matching 
to an outer zone downstream, is Y = 0 at 5 = 00, and therefore a first integral of (7) is 

From the results quoted above, to lowest order for the laminar flame, 

which may be used, in matching of the inner solution given by (8), to provide the 
boundary condition 

for the slope of the outer solution in the upstream region. In addition, the boundary 
condition Y(O,7,5, r )  = 0 for the outer solution in the upstream region is obtained 
through matching, while the boundary condition Y( - 00, ‘I,[, r )  = 1 follows from the 
conditions specified upstream. The problem that remains is linear, viz. that of solving 
(5) in the upstream region with F = 0 and with the boundary conditions just stated. 
The flame-speed parameter m and the fluctuating position a of the flame front are 
obtained by requiring the solution of the second-order equation to satisfy three 
boundary conditions. 

Here this linear problem is solved by a perturbation technique using a regular 
expansion in powers of the gradients of v. This expansion, justified by the small-s 
approximation, does not exclude influences of the flame on the flow, but if such 
influences occur then they must not be sharp enough to violate the small-gradient 
expansion. Furthermore, such influences would cause the analysis not to be closed, in 
the sense that properties of v cannot be known without further consideration of the 

[aY/ag]g=,- = - (1 + IVal2)-4 (9) 

20-2 
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flame. Let rn = m,+m,+m,+ ..., a = ao+a,+a2+ ... and Y = Yo+Y,+Y,+ ... 
denote the expansions in B,  where subscripts identify the power of the gradient. The 
expansion of v becomes 

v(x, y, z ,  t )  = v +  ([+a,) vx+ a,v, + i(5 + ao)2vxx + . . ., (10)  

where v on the right-hand side denotes the value v(0, y, z, t )  of the fluctuating velocity 
field a t  the point x = 0, defined as the average position of the reactive-diffusive zone. 
Similar notation is used in the following for v, v,, etc. 

Putting these expansions into ( 5 ) ,  we obtain to lowest order in gradients for the 
outer equation 

a y 0  a ~ ,  a v o  
-+(mo-ao,+u)--- = 0. 

27 a5 a$2 
As stated previously, the solution to (1 1) satisfying the boundary conditions is 

Yo = Y,(E) = 1 -exp5, (12) 

with m, - aOt + u = 1. Since a is the fluctuating part of the flame position, the definitions 
yield for the time average iTio = 0, whence ZOt = 0. In view of the fact that T i  = 0, we 
then obtain mo = 1 and aot = u, where, according to our notation, u denotes u(0, y, z, t ) .  
Overbars will always indicate time averages taken at fixed values of the spatial 
co-ordinates of the function concerned. 

At first order the equation and boundary conditions are 

This is obtained by using the first two terms of (10)  for u and by substituting the 
lowest-order solution into (5 ) ,  using V . v = 0. After the Fourier transform with respect 
to 7 has been taken, this equation becomes an ordinary differential equation of the 
second order. Let tildes denote Fourier transforms and introduce 

B = JOT [ml - alt - ( v ~ o ) , ,  - ( ~ % ) ~ , ) , 3  d7. 

a5 a@ 
8'5 at2 

Then Yl = Q + B ec, where 

(14)  i d +  --- = ii,Ed, 

w being the transform variable. The general solution to (14)  is 

where At, = 3[1+. (1 + 4iw)tI are the characteristic values of the homogeneous 
equation, with Re A, > 0, Reh, < 0, A,+A2 = 1 and A,h, = - i w .  The upstream 
boundary condition requires 
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and the boundary conditions at 6 = 0 give 

A,+A, = -B and A1A,+A2A2 = -8. 

These last three relationships imply that 6, = B,A1, which may be used along with 
u = 0, ti = 0 and the assumption that the problem is one-dimensional, in the sense that 
transverse derivatives of time averages equal zero, to show that 

- 

and 

From (1 7) and the characteristic value AZ it is easily shown that the zero-frequency 
value of Y1 is zero. Therefore the expansion to first order in E provides no correction to 
the mean profile in the moving frame of reference. Moreover, m, = 0 states that to this 
order there is no difference between turbulent and laminar flame speeds. For these 
reasons we must study the second-order perturbation, but to determine the second- 
order correction to the turbulent velocity uT, we need to consider only the time 
average of the second-order outer solution. The differential equation to be investigated 
is therefore 

with boundary conditions from the second-order terms of the gradient expansions of 
the full boundary conditions. From (9) and the equations following that expression 
it is easily seen that the boundary conditions for (I 8) are 

By integration of (1 8) from f = - co to f = 0, we find that 

where use has been made of results obtained at lower orders and of the boundary 
conditions. Use has also been made of the facts that V . v = 0 and that all of the trans- 
verse derivatives of any time average are zero. 

4. Flame speeds 
The results of this analysis give the influence of large-scale turbulence on the flame 

speed and the flame structure. The flame-speed correction is the easiest to understand. 
From uT/uL = rn, m, = 1, m1 = 0 and (20) it  is seen that uT = uL(l +tlVa,le) in the 
first non-trivial approximation. Since aOt = u, if for simplicity of presentation we 
select an initial time such that a, = 0 at t = 0, then in terms of the longitudinal com- 
ponent u of the turbulent fluctuation in velocity, the flame-speed formula 

is obtained. It may be noted that, although u, t ,  y and z have been defined as non- 
dimensional quantities, this scaling cancels in (21), so that the symbols may be viewed 
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as dimensional. The result in (21) shows that only the mean-square value of the trans- 
verse gradient of the Eulerian displacement 

4 2 ,  y, ZY t )  = 4% YY z, t )  dt so” 
influences the flame speed in the first approximation. This is readily understood from 
a wrinkled-laminar-flame model. 

To fix ideas, first assume that there is no z dependence of the displacement a. If an 
element of the laminar-flame front of length dy in the transverse direction experiences 
a differential displacement of its end points by an amount da, then by simple geometry 
the length of the element of the flame front is dl = dy/cos 8, where tan 8 = du/dy. In  
this case dl /dy  is the ratio of an element of flame area dA, to an element of cross-sectional 
area dA of the flow. For small angles 8, l/cos 8E 1/( 1 - to2) 1 + 8O2 21 1 + 4 tan2 8. 
Therefore dA,/dA = 1 + $(du/dy)2 to a first approximation. If there is a z dependence 
of the displacement a as well, then similarly dA,/dA = 1 + g(8a/8y)2 + $(8a/8z)2. The 
average of this expression provides the average ratio of the wrinkled-flame area to the 
cross-sectional area: (A,/A) = 1 + i(Z+a?). In the wrinkled-flame model, the ratio 
of the turbulent to the laminar flame speed is simply this average area ratio. Therefore 
it is seen that the result obtained by elementary mechanistic reasoning concerning 
wrinkled flames is entirely in agreement with (21). It may be inferred that, to the order 
to which the analysis has been carried, effects of neither strain rate nor flame curvature 
on the laminar flame speed influence the turbulent flame speed. 

Equation (21) differs from formulae previously given for the turbulent flame speed. 
A popular formula of wrinkled-flame theory, uT = u,+ (a2), (e.g. Williams 1965), 
differs functionalIy from (21) in that it involves u linearly rather than quadratically. 
Those formulae which have been proposed which involve u quadratically do not contain 
its time integral, an operation essential for the extraction of the displacement that 
influences the extent of wrinkling. If an extended Taylor hypothesis is introduced to 
relate dt to dx,  then (21) becomes 

which is like a formula of Shelkin (Williams 1965) if the x integral ‘ cancels’ the y and z 
derivatives, as it does, for example, if the fluctuating velocity field is isotropic. The 
result that leads to (21) resembles closely a formula given by Kuznetsov (1975), the 
present analysis corresponding to the limit of that formula in which the wrinkled 
laminar flame always propagates normal to itself at  the constant velocity u,. 

If the integral were absent in (21), then the ratio of the mean-square intensity of 
longitudinal velocity fluctuations to the square of the transverse Taylor scale would 
appear in the flame-speed formula. Because of the integral, a Taylor-like scale for the 
fluctuating longitudinal displacement appears instead. For axisymmetric turbulence, 
2 = 2 and (21) can be written as uT = uIa( 1 +a:). If the turbuIence is isotropic and if 
a Taylor hypothesis is introduced, then 3 = uf/ul, where u1 = (az)* denotes the root- 
mean-square velocity fluctuation in the streamwise direction. In this case, the simple 
formula uT = u, + uf/uL is obtained. This expression differs from the expansion of the 
Shelkin formula for small uI/uL only in the absence of a factor of 2 multiplying u;/uL, 

- 
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X 

FIGURE 1. Schematic diagram of turbulent flame structure. 

but it agrees precisely with equation (24) of Williams (1970). From this result it may 
be noted that even if the root-mean-square Eulerian displacement vanes with time 
owing to non-stationarity of a, the turbulent flame speed uT still remains constant 
as a consequence of stationarity of v. In effect, the transverse spatial derivative in (21) 
removes growth in time. 

From the simple formula uT = u, + u;/uL it is seen that uT/uL is independent of the 
turbulence scale, at a fixed relative intensity ul/uL, in the limit of large-scale turbulence. 
More generally, let *(a; i- a2) = (ul Tl/Z)2, where I is the transverse Taylor-like scale for 
longitudinal displacement and Tl is a time characteristic of the integral of a. With 
1, = uLTl a length characteristic of the streamwise integral of Q, the same result is 
obtained if the ratio l1/1 is independent of the scale. There is some experimental evidence 
favouring the absence of a dependence of uT/uL on the turbulence scale in large-scale 
turbulence (Ballal & Lefebvre 1974), although most of the experimental work has been 
done at  turbulence intensities that are high enough to make the applicability of the 
present analysis uncertain, since when 1,/1 is of order unity or greater the small- 
gradient expansion requires small velocity fluctuations (ul/uL + 1). Specifically, it 
may be stated that if the fluctuating displacement field is isotropic, and if a Taylor 
hypothesis is applicable thereto, then the present theory is restricted to turbulence of 
intensity sufficiently low for ul/uL to be small. In general, this restriction is not present, 
since only the gradients of the Eulerian displacement need to be small. 

- -  

5. Flame structure 
The dominant aspects of the flame structure may be understood most easily by 

reference to figure 1. The curves labelled T(x, t l )  and T(x,ta) represent the laminar 
flame structure at  two different times that correspond closely to two extreme values 
of the displacement of the laminar flame. The advantage of adopting the moving 
co-ordinate in ( 5 )  is that the subsequent analysis automatically accounts for this 
displacement. In the first approximation, the main factor affecting the turbulent flame 
structure is this displacement. While the result aOt = u, obtained after (12), implies 
that in the first approximation the flame-front displacement equals the Eulerian 
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displacement of the upstream mixture, the correction in (16) shows that to first order 
e there are differences between the instantaneous motion of the flame and that of the 
fluid. The first approximation to the mean profile p(x) is obtained by averaging the 
instantaneous laminar flame profiles over all time. The profile of the average intensity 
of temperature fluctuationsT'2(x) also has a contribution in a first approximation from 
a suitable average of the moving laminar flame. The analysis in the second part of 5 3 
is needed only for obtaining corrections to these results, as given in (17). 

To calculate profiles of various averaged quantities through the flame begin with 
Y(x, y, z, t )  = Y,(x - a) + Y,(x - a, y, z, t ) .  . . . From this it is seen that, even in the first 
approximation, averages of any function of Y involve the complete probability density 
function of a. = a(0, y, z, t ) .  In  the second approximation, joint probability density 
functions for a, uz, etc., enter through (17) .  The outer solution for YL may be used to 
show that at  lowest order the average temperature profile is determined by 

~ ( x )  = 1 [i - exp (x - a,)] H (  - x + ao) ~ ( a , )  da,, 
OD 

--oo 

where P(a,) is the probability density function for a,. 
In  general, to perform an explicit calculation of H(x)  an expansion of P(a,) about a 

Gaussian form may be selected. For illustrative purposes, assume that P(a,) is precisely 
Gaussian with zero mean: P(ao) = (27d2)-4 exp [ - a%/(2S2)], where 8 = (a;)+. Then 

which approaches the laminar profile as b + 0 and 6 erfc ( x / 2 ) 6 )  as 8 becomes large. 
Curves of P(x) for various values of 8, according to (22), are shown in figure 2. Note that 
the characteristic thickness of the turbulent flame for sufficiently large values of 8 then 
becomes xT x 8d = llul/uL, if the previously written expression is employed to 
estimate the displacement in terms of the intensity and a characteristic longitudinal 
scale of the turbulent displacement field. The resultant linear dependence of the flame 
thickness on a turbulence scale and on the root-mean-square turbulent velocity 
fluctuation seems reasonable. It may be observed that, if 8d is larger than the flame 
thickness, in the mean the turbulent flame is not divided into convective-diffusive and 
reactive-diffusive zones but instead has some reaction occurring nearly everywhere. 
Note also that turbulence scales may influence the flame thickness without affecting 
the flame speed in the large-scale limit. 

One aspect of the result for the flame thickness deserves further emphasis. Observe 
that, roughly, 8 = ( 2 ) a .  Stationarity of v does not imply stationarity of the time 
integral a. The Lagrangian displacement of fluid elements by turbulent fluctuations 
is known to be non-stationary, constituting the process of turbulent diffusion. 
Specifically, a linear dependence on time is ascribed to the Lagrangian version of 2 
a t  large times, as a consequence of the non-vanishing of the time integral (0  to co) of 
the autocorrelation of the Lagrangian velocity. Whether the Eulerian displacement a 
is stationary for grid turbulence remains an unresolved question of fundamental 
importance from both the theoretical and the experimental viewpoint (Comte-Bellot & 
Corrsin 1971). If a is stationary, then the thickness of the turbulent flame is constant, 
independent of time. However, if the variance 2 grows with time, then the turbulent 
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FIauRE 2. Profiles of mean reactant concentration, according to (22). 

flame thickness also grows, by a type of turbulent-diffusion process, even though the 
turbulent flame speed remains constant. Kuznetsov (1975) mentioned this effect and 
offered some rationalization of it. The present results suggest that experiments on 
turbulent flames might help to clarify this fundamental problem in grid turbulence. 

If a is non-stationary, there are implications concerning the validity of the present 
analysis. If 2 grows with time then a gradient expansion, which effectively requires 
(auJ2 -g u2, is restricted in time. If - a2/At, where A, is a Taylor scale, then 3 4 A? 
is obtained in a first approximation. By analogy with the Lagrangian displacement, 
62 - @Ll/uT, where L, is a longitudinal integral length scale for the turbulence, and 
the restriction on time becomes Ll/uT -g t^ < (L,/u,) (A1/Ll)2 (@/uf)-', the first in- 
equality being necessary for use of the given formula for p. Since usual estimates place 
AJL, 5 1, it  is seen that with these ideas a low turbulence intensity is implied by the 
gradient expansion. On the other hand, if a is stationary then the restriction on time 
does not arise. 

With Y' = 7, it  is easy to calculate a profile of Y'2 in a manner similar to that 
employed in deriving (22). The result will not be written here because the formula is 
too long. Qualitatively, the profile is like that illustrated in figure 1. 

- 

6. Turbulent transport 
A quantity of considerable interest in modelling approximations for turbulent flow 

is the streamwise turbulent transport u Y'. In  the first approximation, this quantity is 
uY' = u( Y - F) = U Y  = uYL(z- a,), the average to be taken keeping x fixed. Since 
u = aOt, we may write 

- 
- - 

a 
U\rL(x-a,) = - ;tJoz-"oYL(w = j p 0 - 4 +  [exp(x-ao)- 11)H(a,-4, (23) 

where the outer solution for YL has been employed in obtaining the second equality. 
Although further reduction of this expression would require use of the probability 
density function P(a,), it appears that generally uY,(x - a,), as given by this formula, 
will be non-negative. Note, for example, that the quantity to be averaged is an 
increasing function of a, and that for small a, an expansion yields 

UY,(X - a,) = ~(i$~ ezH( - z), 
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which is non-negative and independent of t if 3 increases linearly with t. This result 
could be consistent with a gradient approximation to turbulent transport, 

- 
uY' = -DdF/dx, 

- 
where D is an Eulerian turbulent diffusion coefficient. For small a, we find D = *(a& 
which according to conventional ideas is proportional to the intensity u; and the 
longitudinal integral scale L, of the longitudinal turbulent velocity fluctuations 
(dimensionally, fi N u:Ll/uL). 

However, uYL(x - a,) = 0 if a, is stationary, since the identity u = a,, implies that 
the quantity to be averaged is the time derivative of a function of a,. Therefore, in this 
case the first non-zero contribution to uY' arises a t  the next order in the gradient 
expansion. Care must be taken in developing this expansion in the laboratory frame 
because the rapid change in the derivative of Y L ( x - a )  in the inner zone prevents a 
Taylor expansion about x-a, from being carried further than the leading term 
YL(x - a,) unless a, is of order /3-' or smaller. To first order in E ,  the velocity that 
appears in u Y' is u(0, y, z, t )  + xu,(O, y, z, t ) ,  so that 

- 

- 
- 
uY' = uYL(x- a)  + u,xYL(x - a) + uY,(x - a, y, z, t )  + .. ., 

where, consistent with the earlier definitions (lo), on the right-hand side u and u, are 
evaluated at  x = 0. Since a,, = u, the expansion a, = aot+aIt+ .. . gives 

u = at-a,,+ ..., 
whence u YL(x - a)  = a, YL(z - a) - a,, YL(z - a) + . . . , the first term of which vanishes 
if a is a stationary random variable. Therefore 

- 
uY' = - altYL(x - a )  + uzxYL(x - a)  + uY,(x- a, y, z, t )  + . . ., (24) 

where a,, and Y, are given in (16) and (17). Further reduction of (24) requires use of 
approximations concerning a,, and Y,. 

Considering the low-frequency limit appropriate for large-scale turbulence, we may 
put A, x 1 + iw and A, x - iw in (16) and (17), so that a,, x - [u, + (va,), + (wa0)J and 
Y, x - u,i(x - a)2 es-a, giving to lowest order in E 

- 
uY' = -u,xexp(x-a,)H(a,-2)-[u,+ (wa,),+ (wa,),]exp(x-a,)H(a,-x) 

- (u", (x - a0)2exp (x - a,) H(a ,  - x), (25) 

where T i ,  = 0 and homogeneity in y and z have been used in averages. Knowledge of 
the joint probability density function for u, and a, is needed for calculating the average 
in (25). A feeling for some characteristics of the result can be obtained from an expan- 
sion for small a,,, although such an expansion can be compatible with the low-frequency 
limit only for very low turbulence intensity. Specifically, if t, and t, are characteristic 
times for turbulence and laminar flame transit, respectively, then since 

a 0  = ( W L )  ( t T / t L ) ,  

a, 6 1 requires O/uL < tL/ t , ,  while in addition t L / t ,  6 1 in the low-frequency limit. 
The first non-vanishing terms in the expansion of (25) in powers of a. are 

Go( 1 + x) e Z H (  - x) - (21, x2e5~ H (  - x), 
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but since u x a,t,/t,, we have u g a, for tL g t,, which shows that the second of these 
terms is small compared with the first in the current approximation. Thus 

- -  
uY‘ = ( ~ , a , )  (1 + x )  e5 H (  - x )  

is valid for slow and very weak turbulence, with a large scale, when the flame-front 
displacement a (in first approximation the Eulerian displacement a )  is a stationary 
random variable. 

In  (26) it  is seen that uy’ changes sign a t  x = - 1 and drops sharply to zero a t  x = 0. 
Note therefore that in this limiting case any gradient approximation= = - DdH/dx 
to the turbulent transport would have to employ a turbulent diffusion coefficient D 
that changes sign at x = - 1. Since negative coefficients of diffusion are undesirable, 
it  may be concluded that this particular conventional approximation for closure in 
modelling of turbulent reacting flows is inapplicable in the limit considered. In  general, 
gradient approximations for turbulent transport of reacting species in flames do not 
have sufficient fundamental justification and must be considered to be of doubtful 
validity. 

7. Concluding remarks 
An alternative approach to the problem analysed herein is to use a co-ordinate 

system that moves in the longitudinal direction at the fluctuating velocity u of the 
fluid, instead of at the velocity of the reactive-diffusive zone. Although we have com- 
pleted the entire theory by this alternative approach, none of the analysis is included 
herein because it involves excessively tedious algebra. In  particular, solutions up to 
second order in 8-1 in the reactive-diffusive zone must be developed as a consequence 
of the displacement of this zone with respect to the adopted co-ordinates. Contrary 
to the present method, the alternative approach involves performing the expansion in 
e prior to that in 8-1. Since we found that the two approaches lead to the same results, 
it  may be inferred that, subject to certain ordering restrictions that arise in the analysis 
of the reactive-diffusive zone by the alternative approach, the order in which the 
expansions are performed is irrelevant. Our experience in pursuing alternative paths 
has shown that if a reactive-diffusive zone exists then appreciable simplification 
occurs when a co-ordinate system is selected that moves with this zone. 

In  the present work attention is focused only on the simplest effects produced by the 
spatial variation of the fluctuating velocity field. New phenomena occur when the 
Lewis number of the limiting component is different from one or in the case of a two- 
reactant system near stoichiometric composition. These problems can also be treated 
by the method of gradient expansions. In  the stable case, the main influence of a Lewis 
number different from unity is that flame-sheet wrinklings produced by the fluctuating 
velocity field trigger fluctuation of the combustion temperature. Since the local flame 
velocity is sensitive to the combustion temperature, new effects are added to those 
described herein. The results obtained for a Lewis number differing from unity by an 
amount of the order of magnitude of /3-l will be presented in a following paper. 

It is worthwhile to note that the method of gradient expansions, used throughout 
this work, also can be employed to solve other kinds of problem. One example is the 
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self-evolution of an initially perturbed flame front in a quiescent gas. The correspond- 
ing evolution equation, obtained as above for a Lewis number of unity, is 

at = - & I  VaJ2+Vh+ ..., 
up to terms of second order in gradients. Notice that here the first term corresponds to 
normal propagation at the planar flame speed; the second term is a curvature effect 
similar to that discussed by Markstein (1964). Owing to the time average, this last 
effect disappears in the turbulent wrinkled flame. This evolution equation agrees, up 
to second order in gradients, with that obtained by Sivashinsky (1977a, b ) .  It is worth- 
while to notice that in this equation the self-evolution of the flame front is of second 
order in gradients, while (16) shows that the spatial dependence of the upstream field of 
fluctuating velocity forces an evolution of the flame front at first order in gradients. 
Thus, on a time-resolved basis, the forced evolution exerts the larger influence on 
flame motion. 

A second example of the use of the present method is analysis of the stationary 
shape of a Bunsen flame. The approach yields the equation 

&IVa12 = (u-uL)/u,+V2a, 

where u is the velocity of the fresh mixture. In two dimensions, the solution is 
ay = - n tanh ( iny) ,  where n = [2(u - uL)/uL]*. This type of result has been developed 
by Sivashinsky (see references quoted by Sivashinsky 1977 a)  through a somewhat 
different expansion. 

Support for this work was provided by the United States Air Force Office of 
Scientific Research under Grant number AFOSR 77-3362. 
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